Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Cell Infect Microbiol ; 12: 958240, 2022.
Article in English | MEDLINE | ID: covidwho-2022659

ABSTRACT

Suboptimal efficacy of the current antibiotic regimens and frequent emergence of antibiotic-resistant Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), render TB the world's deadliest infectious disease before the COVID-19 outbreak. Our outdated TB treatment method is designed to eradicate actively replicating populations of Mtb. Unfortunately, accumulating evidence suggests that a small population of Mtb can survive antimycobacterial pressure of antibiotics by entering a "persister" state (slowly replicating or non-replicating and lacking a stably heritable antibiotic resistance, termed drug tolerance). The formation of drug-tolerant Mtb persisters is associated with TB treatment failure and is thought to be an adaptive strategy for eventual development of permanent genetic mutation-mediated drug resistance. Thus, the molecular mechanisms behind persister formation and drug tolerance acquisition are a source of new antibiotic targets to eradicate both Mtb persisters and drug-resistant Mtb. As Mtb persisters are genetically identical to antibiotic susceptible populations, metabolomics has emerged as a vital biochemical tool to differentiate these populations by determining phenotypic shifts and metabolic reprogramming. Metabolomics, which provides detailed insights into the molecular basis of drug tolerance and resistance in Mtb, has unique advantages over other techniques by its ability to identify specific metabolic differences between the two genetically identical populations. This review summarizes the recent advances in our understanding of the metabolic adaptations used by Mtb persisters to achieve intrinsic drug tolerance and facilitate the emergence of drug resistance. These findings present metabolomics as a powerful tool to identify previously unexplored antibiotic targets and improved combinations of drug regimens against drug-resistant TB infection.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Carbon , Drug Resistance , Drug Tolerance , Humans , Tuberculosis, Multidrug-Resistant/drug therapy
3.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1649960

ABSTRACT

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Subject(s)
COVID-19/complications , COVID-19/diagnosis , Convalescence , Adaptive Immunity/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Autoantibodies/blood , Biomarkers/metabolism , Blood Proteins/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Disease Progression , Female , Humans , Immunity, Innate/genetics , Longitudinal Studies , Male , Middle Aged , Risk Factors , SARS-CoV-2/isolation & purification , Transcriptome , Young Adult , Post-Acute COVID-19 Syndrome
4.
Am J Med Qual ; 37(4): 335-341, 2022.
Article in English | MEDLINE | ID: covidwho-1621699

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, frequently changing guidelines presented challenges to emergency department (ED) clinicians. The authors implemented an electronic health record (EHR)-integrated clinical pathway that could be accessed by clinicians within existing workflows when caring for patients under investigation (PUI) for COVID-19. The objective was to examine the association between clinical pathway utilization and adherence to institutional best practice treatment recommendations for COVID-19. METHODS: The authors conducted an observational analysis of all ED patients seen in a health system inclusive of seven EDs between March 18, 2020, and April 20, 2021. They implemented the pathway as an interactive flow chart that allowed clinicians to place orders while viewing the most up-to-date institutional guidance. Primary outcomes were proportion of admitted PUIs receiving dexamethasone and aspirin in the ED, and secondary outcome was time to delivering treatment. RESULTS: A total of 13 269 patients were admitted PUIs. The pathway was used by 40.6% of ED clinicians. When clinicians used the pathway, patients were more likely to be prescribed aspirin (OR, 7.15; 95% CI, 6.2-8.26) and dexamethasone (10.4; 8.85-12.2). For secondary outcomes, clinicians using the pathway had statistically significant ( P < 0.0001) improvement in timeliness of ordering medications and admission to the hospital. Aspirin, dexamethasone, and admission order time were improved by 103.89, 94.34, and 121.94 minutes, respectively. CONCLUSIONS: The use of an EHR-integrated clinical pathway improved clinician adherence to changing COVID-19 treatment guidelines and timeliness to associated medication administration. As pathways continue to be implemented, their effects on improving patient outcomes and decreasing disparities in patient care should be further examined.


Subject(s)
COVID-19 Drug Treatment , Electronic Health Records , Aspirin/therapeutic use , Critical Pathways , Dexamethasone/therapeutic use , Emergency Service, Hospital , Hospitals , Humans , Pandemics
5.
Acad Med ; 96(12): 1711-1716, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1408213

ABSTRACT

PROBLEM: The COVID-19 pandemic significantly disrupted point-of-care ultrasound (POCUS) education. Medical schools and residency programs placed restrictions on bedside teaching and clinical scanning as part of risk mitigation. In response, POCUS faculty from 15 institutions nationwide collaborated on an alternative model of ultrasound education, A Distance-learning Approach to POCUS Training (ADAPT). APPROACH: ADAPT was repeated monthly from April 1 through June 30, 2020. It accommodated 70 learners, who included 1- to 4-week rotators and asynchronous learners. The curriculum included assigned prework and learning objectives covering 20 core POCUS topics. A rotating group of 30 faculty and fellows delivered daily virtual teaching sessions that included gamification to increase learner engagement and hands-on instruction through teleguidance. After participation, faculty and learners completed anonymous surveys. OUTCOMES: Educators reported a significant decrease in preparatory time (6.2 vs 3.1 hours per week, P < .001) dedicated to ultrasound education after implementing ADAPT. The majority of 29 learners who completed surveys felt "somewhat confident" or "very confident" in their ability to acquire (n = 25, 86.2%) and interpret (n = 27, 93.1%) ultrasound images after the intervention; the majority of 22 educators completing surveys rated the program "somewhat effective" or "very effective" at contributing to learner's ability to acquire (n = 13, 59.1%) and interpret (n = 20, 90.9%) images. Most learners (n = 28, 96.6%) and all educators (n = 22, 100%) were "satisfied" or "very satisfied" with ADAPT as a whole, and the large majority of educators were "very likely" (n = 18, 81.8%) to recommend continued use of this program. NEXT STEPS: A virtual curriculum that pools the efforts of multiple institutions nationwide was implemented rapidly and effectively while satisfying educational expectations of both learners and faculty. This collaborative framework can be replicated and may be generalizable to other educational objectives.


Subject(s)
COVID-19 , Education, Distance/methods , Internship and Residency/methods , Point-of-Care Testing , Ultrasonography/methods , Curriculum , Humans , Program Evaluation , SARS-CoV-2 , Surveys and Questionnaires
7.
Crit Care ; 24(1): 702, 2020 12 24.
Article in English | MEDLINE | ID: covidwho-992527

ABSTRACT

COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.


Subject(s)
COVID-19/diagnostic imaging , Consensus , Echocardiography/standards , Expert Testimony/standards , Internationality , Point-of-Care Systems/standards , COVID-19/therapy , Echocardiography/methods , Expert Testimony/methods , Humans , Lung/diagnostic imaging , Thromboembolism/diagnostic imaging , Thromboembolism/therapy , Triage/methods , Triage/standards , Ultrasonography/standards
8.
J Ultrasound Med ; 40(9): 1879-1892, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-956716

ABSTRACT

OBJECTIVES: To develop a consensus statement on the use of lung ultrasound (LUS) in the assessment of symptomatic general medical inpatients with known or suspected coronavirus disease 2019 (COVID-19). METHODS: Our LUS expert panel consisted of 14 multidisciplinary international experts. Experts voted in 3 rounds on the strength of 26 recommendations as "strong," "weak," or "do not recommend." For recommendations that reached consensus for do not recommend, a fourth round was conducted to determine the strength of those recommendations, with 2 additional recommendations considered. RESULTS: Of the 26 recommendations, experts reached consensus on 6 in the first round, 13 in the second, and 7 in the third. Four recommendations were removed because of redundancy. In the fourth round, experts considered 4 recommendations that reached consensus for do not recommend and 2 additional scenarios; consensus was reached for 4 of these. Our final recommendations consist of 24 consensus statements; for 2 of these, the strength of the recommendations did not reach consensus. CONCLUSIONS: In symptomatic medical inpatients with known or suspected COVID-19, we recommend the use of LUS to: (1) support the diagnosis of pneumonitis but not diagnose COVID-19, (2) rule out concerning ultrasound features, (3) monitor patients with a change in the clinical status, and (4) avoid unnecessary additional imaging for patients whose pretest probability of an alternative or superimposed diagnosis is low. We do not recommend the use of LUS to guide admission and discharge decisions. We do not recommend routine serial LUS in patients without a change in their clinical condition.


Subject(s)
COVID-19 , Inpatients , Canada , Consensus , Humans , Lung/diagnostic imaging , SARS-CoV-2
9.
Cell ; 183(6): 1479-1495.e20, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-917236

ABSTRACT

We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.


Subject(s)
COVID-19 , Genomics , RNA-Seq , SARS-CoV-2 , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL